Skip to contents
-
ANOVA()
get_tau_ANOVA()
- Analysis of Variance
-
AverageN2()
evaluate(<AverageN2>,<TwoStageDesign>)
- Regularization via L1 norm
-
Binomial()
quantile(<Binomial>)
simulate(<Binomial>,<numeric>)
- Binomial data distribution
-
ChiSquared()
quantile(<ChiSquared>)
simulate(<ChiSquared>,<numeric>)
- Chi-Squared data distribution
-
ConditionalPower()
Power()
evaluate(<ConditionalPower>,<TwoStageDesign>)
- (Conditional) Power of a Design
-
ConditionalSampleSize()
ExpectedSampleSize()
ExpectedNumberOfEvents()
evaluate(<ConditionalSampleSize>,<TwoStageDesign>)
- (Conditional) Sample Size of a Design
-
evaluate(<Constraint>,<TwoStageDesign>)
`<=`(<ConditionalScore>,<numeric>)
`>=`(<ConditionalScore>,<numeric>)
`<=`(<numeric>,<ConditionalScore>)
`>=`(<numeric>,<ConditionalScore>)
`<=`(<ConditionalScore>,<ConditionalScore>)
`>=`(<ConditionalScore>,<ConditionalScore>)
`<=`(<UnconditionalScore>,<numeric>)
`>=`(<UnconditionalScore>,<numeric>)
`<=`(<numeric>,<UnconditionalScore>)
`>=`(<numeric>,<UnconditionalScore>)
`<=`(<UnconditionalScore>,<UnconditionalScore>)
`>=`(<UnconditionalScore>,<UnconditionalScore>)
- Formulating Constraints
-
ContinuousPrior()
- Continuous univariate prior distributions
-
DataDistribution-class
DataDistribution
- Data distributions
-
GroupSequentialDesign()
TwoStageDesign(<GroupSequentialDesign>)
TwoStageDesign(<GroupSequentialDesignSurvival>)
- Group-sequential two-stage designs
-
GroupSequentialDesignSurvival-class
- Group-sequential two-stage designs for time-to-event-endpoints
-
MaximumSampleSize()
evaluate(<MaximumSampleSize>,<TwoStageDesign>)
- Maximum Sample Size of a Design
-
N1()
evaluate(<N1>,<TwoStageDesign>)
- Regularize n1
-
NestedModels()
quantile(<NestedModels>)
simulate(<NestedModels>,<numeric>)
- F-Distribution
-
Normal()
quantile(<Normal>)
simulate(<Normal>,<numeric>)
- Normal data distribution
-
OneStageDesign()
TwoStageDesign(<OneStageDesign>)
TwoStageDesign(<OneStageDesignSurvival>)
plot(<OneStageDesign>)
- One-stage designs
-
OneStageDesignSurvival-class
- One-stage designs for time-to-event endpoints
-
Pearson2xK()
get_tau_Pearson2xK()
- Pearson's chi-squared test for contingency tables
-
PointMassPrior()
- Univariate discrete point mass priors
-
Prior-class
Prior
- Univariate prior on model parameter
-
expected()
evaluate()
- Scores
-
Student()
quantile(<Student>)
simulate(<Student>,<numeric>)
- Student's t data distribution
-
Survival()
quantile(<Survival>)
simulate(<Survival>,<numeric>)
- Log-rank test
-
SurvivalDesign()
TwoStageDesign(<TwoStageDesign>)
OneStageDesign(<OneStageDesign>)
GroupSequentialDesign(<GroupSequentialDesign>)
- SurvivalDesign
-
TwoStageDesign()
summary(<TwoStageDesign>)
- Two-stage designs
-
TwoStageDesignSurvival-class
- Two-stage design for time-to-event-endpoints
-
ZSquared()
get_tau_ZSquared()
- Distribution class of a squared normal distribution
-
adoptr-package
adoptr
- Adaptive Optimal Two-Stage Designs
-
get_lower_boundary_design()
get_upper_boundary_design()
- Boundary designs
-
bounds()
- Get support of a prior or data distribution
-
composite()
evaluate(<CompositeScore>,<TwoStageDesign>)
- Score Composition
-
condition()
- Condition a prior on an interval
-
c2()
- Query critical values of a design
-
cumulative_distribution_function()
- Cumulative distribution function
-
expectation()
- Expected value of a function
-
get_initial_design()
- Initial design
-
make_tunable()
make_fixed()
- Fix parameters during optimization
-
minimize()
- Find optimal two-stage design by constraint minimization
-
n1()
n2()
n()
- Query sample size of a design
-
plot(<TwoStageDesign>)
- Plot
TwoStageDesign
with optional set of conditional scores
-
posterior()
- Compute posterior distribution
-
predictive_cdf()
- Predictive CDF
-
predictive_pdf()
- Predictive PDF
-
print()
- Printing an optimization result
-
probability_density_function()
- Probability density function
-
simulate(<TwoStageDesign>,<numeric>)
- Draw samples from a two-stage design
-
subject_to()
evaluate(<ConstraintsCollection>,<TwoStageDesign>)
- Create a collection of constraints
-
tunable_parameters()
update(<TwoStageDesign>)
update(<OneStageDesign>)
- Switch between numeric and S4 class representation of a design