Skip to contents

All functions

ANOVA() get_tau_ANOVA()
Analysis of Variance
AverageN2() evaluate(<AverageN2>,<TwoStageDesign>)
Regularization via L1 norm
Binomial() quantile(<Binomial>) simulate(<Binomial>,<numeric>)
Binomial data distribution
ChiSquared() quantile(<ChiSquared>) simulate(<ChiSquared>,<numeric>)
Chi-Squared data distribution
ConditionalPower() Power() evaluate(<ConditionalPower>,<TwoStageDesign>)
(Conditional) Power of a Design
ConditionalSampleSize() ExpectedSampleSize() ExpectedNumberOfEvents() evaluate(<ConditionalSampleSize>,<TwoStageDesign>)
(Conditional) Sample Size of a Design
evaluate(<Constraint>,<TwoStageDesign>) `<=`(<ConditionalScore>,<numeric>) `>=`(<ConditionalScore>,<numeric>) `<=`(<numeric>,<ConditionalScore>) `>=`(<numeric>,<ConditionalScore>) `<=`(<ConditionalScore>,<ConditionalScore>) `>=`(<ConditionalScore>,<ConditionalScore>) `<=`(<UnconditionalScore>,<numeric>) `>=`(<UnconditionalScore>,<numeric>) `<=`(<numeric>,<UnconditionalScore>) `>=`(<numeric>,<UnconditionalScore>) `<=`(<UnconditionalScore>,<UnconditionalScore>) `>=`(<UnconditionalScore>,<UnconditionalScore>)
Formulating Constraints
ContinuousPrior()
Continuous univariate prior distributions
DataDistribution-class DataDistribution
Data distributions
GroupSequentialDesign() TwoStageDesign(<GroupSequentialDesign>) TwoStageDesign(<GroupSequentialDesignSurvival>)
Group-sequential two-stage designs
GroupSequentialDesignSurvival-class
Group-sequential two-stage designs for time-to-event-endpoints
MaximumSampleSize() evaluate(<MaximumSampleSize>,<TwoStageDesign>)
Maximum Sample Size of a Design
N1() evaluate(<N1>,<TwoStageDesign>)
Regularize n1
NestedModels() quantile(<NestedModels>) simulate(<NestedModels>,<numeric>)
F-Distribution
Normal() quantile(<Normal>) simulate(<Normal>,<numeric>)
Normal data distribution
OneStageDesign() TwoStageDesign(<OneStageDesign>) TwoStageDesign(<OneStageDesignSurvival>) plot(<OneStageDesign>)
One-stage designs
OneStageDesignSurvival-class
One-stage designs for time-to-event endpoints
Pearson2xK() get_tau_Pearson2xK()
Pearson's chi-squared test for contingency tables
PointMassPrior()
Univariate discrete point mass priors
Prior-class Prior
Univariate prior on model parameter
expected() evaluate()
Scores
Student() quantile(<Student>) simulate(<Student>,<numeric>)
Student's t data distribution
Survival() quantile(<Survival>) simulate(<Survival>,<numeric>)
Log-rank test
SurvivalDesign() TwoStageDesign(<TwoStageDesign>) OneStageDesign(<OneStageDesign>) GroupSequentialDesign(<GroupSequentialDesign>)
SurvivalDesign
TwoStageDesign() summary(<TwoStageDesign>)
Two-stage designs
TwoStageDesignSurvival-class
Two-stage design for time-to-event-endpoints
ZSquared() get_tau_ZSquared()
Distribution class of a squared normal distribution
adoptr-package adoptr
Adaptive Optimal Two-Stage Designs
get_lower_boundary_design() get_upper_boundary_design()
Boundary designs
bounds()
Get support of a prior or data distribution
composite() evaluate(<CompositeScore>,<TwoStageDesign>)
Score Composition
condition()
Condition a prior on an interval
c2()
Query critical values of a design
cumulative_distribution_function()
Cumulative distribution function
expectation()
Expected value of a function
get_initial_design()
Initial design
make_tunable() make_fixed()
Fix parameters during optimization
minimize()
Find optimal two-stage design by constraint minimization
n1() n2() n()
Query sample size of a design
plot(<TwoStageDesign>)
Plot TwoStageDesign with optional set of conditional scores
posterior()
Compute posterior distribution
predictive_cdf()
Predictive CDF
predictive_pdf()
Predictive PDF
print()
Printing an optimization result
probability_density_function()
Probability density function
simulate(<TwoStageDesign>,<numeric>)
Draw samples from a two-stage design
subject_to() evaluate(<ConstraintsCollection>,<TwoStageDesign>)
Create a collection of constraints
tunable_parameters() update(<TwoStageDesign>) update(<OneStageDesign>)
Switch between numeric and S4 class representation of a design