Skip to contents
-
ANOVA() get_tau_ANOVA()
- Analysis of Variance
-
AverageN2() evaluate(<AverageN2>,<TwoStageDesign>)
- Regularization via L1 norm
-
Binomial() quantile(<Binomial>) simulate(<Binomial>,<numeric>)
- Binomial data distribution
-
ChiSquared() quantile(<ChiSquared>) simulate(<ChiSquared>,<numeric>)
- Chi-Squared data distribution
-
ConditionalPower() Power() evaluate(<ConditionalPower>,<TwoStageDesign>)
- (Conditional) Power of a Design
-
ConditionalSampleSize() ExpectedSampleSize() ExpectedNumberOfEvents() evaluate(<ConditionalSampleSize>,<TwoStageDesign>)
- (Conditional) Sample Size of a Design
-
evaluate(<Constraint>,<TwoStageDesign>) `<=`(<ConditionalScore>,<numeric>) `>=`(<ConditionalScore>,<numeric>) `<=`(<numeric>,<ConditionalScore>) `>=`(<numeric>,<ConditionalScore>) `<=`(<ConditionalScore>,<ConditionalScore>) `>=`(<ConditionalScore>,<ConditionalScore>) `<=`(<UnconditionalScore>,<numeric>) `>=`(<UnconditionalScore>,<numeric>) `<=`(<numeric>,<UnconditionalScore>) `>=`(<numeric>,<UnconditionalScore>) `<=`(<UnconditionalScore>,<UnconditionalScore>) `>=`(<UnconditionalScore>,<UnconditionalScore>)
- Formulating Constraints
-
ContinuousPrior()
- Continuous univariate prior distributions
-
DataDistribution-class DataDistribution
- Data distributions
-
GroupSequentialDesign() TwoStageDesign(<GroupSequentialDesign>) TwoStageDesign(<GroupSequentialDesignSurvival>)
- Group-sequential two-stage designs
-
GroupSequentialDesignSurvival-class
- Group-sequential two-stage designs for time-to-event-endpoints
-
MaximumSampleSize() evaluate(<MaximumSampleSize>,<TwoStageDesign>)
- Maximum Sample Size of a Design
-
N1() evaluate(<N1>,<TwoStageDesign>)
- Regularize n1
-
NestedModels() quantile(<NestedModels>) simulate(<NestedModels>,<numeric>)
- F-Distribution
-
Normal() quantile(<Normal>) simulate(<Normal>,<numeric>)
- Normal data distribution
-
OneStageDesign() TwoStageDesign(<OneStageDesign>) TwoStageDesign(<OneStageDesignSurvival>) plot(<OneStageDesign>)
- One-stage designs
-
OneStageDesignSurvival-class
- One-stage designs for time-to-event endpoints
-
Pearson2xK() get_tau_Pearson2xK()
- Pearson's chi-squared test for contingency tables
-
PointMassPrior()
- Univariate discrete point mass priors
-
Prior-class Prior
- Univariate prior on model parameter
-
expected() evaluate()
- Scores
-
Student() quantile(<Student>) simulate(<Student>,<numeric>)
- Student's t data distribution
-
Survival() quantile(<Survival>) simulate(<Survival>,<numeric>)
- Log-rank test
-
SurvivalDesign() TwoStageDesign(<TwoStageDesign>) OneStageDesign(<OneStageDesign>) GroupSequentialDesign(<GroupSequentialDesign>)
- SurvivalDesign
-
TwoStageDesign() summary(<TwoStageDesign>)
- Two-stage designs
-
TwoStageDesignSurvival-class
- Two-stage design for time-to-event-endpoints
-
ZSquared() get_tau_ZSquared()
- Distribution class of a squared normal distribution
-
adoptr-package adoptr
- Adaptive Optimal Two-Stage Designs
-
get_lower_boundary_design() get_upper_boundary_design()
- Boundary designs
-
bounds()
- Get support of a prior or data distribution
-
composite() evaluate(<CompositeScore>,<TwoStageDesign>)
- Score Composition
-
condition()
- Condition a prior on an interval
-
c2()
- Query critical values of a design
-
cumulative_distribution_function()
- Cumulative distribution function
-
expectation()
- Expected value of a function
-
get_initial_design()
- Initial design
-
make_tunable() make_fixed()
- Fix parameters during optimization
-
minimize()
- Find optimal two-stage design by constraint minimization
-
n1() n2() n()
- Query sample size of a design
-
plot(<TwoStageDesign>)
- Plot
TwoStageDesign with optional set of conditional scores
-
posterior()
- Compute posterior distribution
-
predictive_cdf()
- Predictive CDF
-
predictive_pdf()
- Predictive PDF
-
print()
- Printing an optimization result
-
probability_density_function()
- Probability density function
-
simulate(<TwoStageDesign>,<numeric>)
- Draw samples from a two-stage design
-
subject_to() evaluate(<ConstraintsCollection>,<TwoStageDesign>)
- Create a collection of constraints
-
tunable_parameters() update(<TwoStageDesign>) update(<OneStageDesign>)
- Switch between numeric and S4 class representation of a design