(Conditional) Sample Size of a Design
Source:R/ConditionalSampleSize.R
ConditionalSampleSize-class.Rd
This score simply evaluates n(d, x1)
for a design d
and the
first-stage outcome x1
.
The data distribution and prior are only relevant when it is integrated.
Usage
ConditionalSampleSize(label = "n(x1)")
ExpectedSampleSize(dist, prior, label = "E[n(x1)]")
ExpectedNumberOfEvents(dist, prior, label = "E[n(x1)]")
# S4 method for class 'ConditionalSampleSize,TwoStageDesign'
evaluate(s, design, x1, optimization = FALSE, ...)
Arguments
- label
object label (string)
- dist
a univariate
distribution
object- prior
a
Prior
object- s
Score
object- design
object
- x1
stage-one test statistic
- optimization
logical, if
TRUE
uses a relaxation to real parameters of the underlying design; used for smooth optimization.- ...
further optional arguments
Examples
design <- TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L)
prior <- PointMassPrior(.4, 1)
css <- ConditionalSampleSize()
evaluate(css, design, c(0, .5, 3))
#> [1] 100 100 50
ess <- ExpectedSampleSize(Normal(), prior)
ene <- ExpectedNumberOfEvents(Survival(0.7), PointMassPrior(1.7, 1))
# those two are equivalent
evaluate(ess, design)
#> [1] 73.86249
evaluate(expected(css, Normal(), prior), design)
#> [1] 73.86249