Conceptually, constraints work very similar to scores (any score can be put in a constraint). Currently, constraints of the form 'score <=/>= x', 'x <=/>= score' and 'score <=/>= score' are admissible.
Usage
# S4 method for class 'Constraint,TwoStageDesign'
evaluate(s, design, optimization = FALSE, ...)
# S4 method for class 'ConditionalScore,numeric'
e1 <= e2
# S4 method for class 'ConditionalScore,numeric'
e1 >= e2
# S4 method for class 'numeric,ConditionalScore'
e1 <= e2
# S4 method for class 'numeric,ConditionalScore'
e1 >= e2
# S4 method for class 'ConditionalScore,ConditionalScore'
e1 <= e2
# S4 method for class 'ConditionalScore,ConditionalScore'
e1 >= e2
# S4 method for class 'UnconditionalScore,numeric'
e1 <= e2
# S4 method for class 'UnconditionalScore,numeric'
e1 >= e2
# S4 method for class 'numeric,UnconditionalScore'
e1 <= e2
# S4 method for class 'numeric,UnconditionalScore'
e1 >= e2
# S4 method for class 'UnconditionalScore,UnconditionalScore'
e1 <= e2
# S4 method for class 'UnconditionalScore,UnconditionalScore'
e1 >= e2
Arguments
- s
Score
object- design
object
- optimization
logical, if
TRUE
uses a relaxation to real parameters of the underlying design; used for smooth optimization.- ...
further optional arguments
- e1
left hand side (score or numeric)
- e2
right hand side (score or numeric)
Examples
design <- OneStageDesign(50, 1.96)
cp <- ConditionalPower(Normal(), PointMassPrior(0.4, 1))
pow <- Power(Normal(), PointMassPrior(0.4, 1))
# unconditional power constraint
constraint1 <- pow >= 0.8
evaluate(constraint1, design)
#> [1] 0.2840466
# conditional power constraint
constraint2 <- cp >= 0.7
evaluate(constraint2, design, .5)
#> [1] 0.7
constraint3 <- 0.7 <= cp # same as constraint2
evaluate(constraint3, design, .5)
#> [1] 0.7