This score evaluates P[X2 > c2(design, X1) | X1 = x1]. Note that the distribution of X2 is the posterior predictive after observing X1 = x1.
Usage
ConditionalPower(dist, prior, label = "Pr[x2>=c2(x1)|x1]")
Power(dist, prior, label = "Pr[x2>=c2(x1)]")
# S4 method for class 'ConditionalPower,TwoStageDesign'
evaluate(s, design, x1, optimization = FALSE, ...)
Arguments
- dist
a univariate
distribution
object- prior
a
Prior
object- label
object label (string)
- s
Score
object- design
object
- x1
stage-one test statistic
- optimization
logical, if
TRUE
uses a relaxation to real parameters of the underlying design; used for smooth optimization.- ...
further optional arguments
Examples
prior <- PointMassPrior(.4, 1)
cp <- ConditionalPower(Normal(), prior)
evaluate(
cp,
TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L),
x1 = 1
)
#> [1] 0.5
# these two are equivalent:
expected(cp, Normal(), prior)
#> E[Pr[x2>=c2(x1)|x1]]<Normal<two-armed>;PointMass<0.40>>
Power(Normal(), prior)
#> Pr[x2>=c2(x1)]