Skip to contents

predictive_cdf() evaluates the predictive CDF of the model specified by a DataDistribution dist and Prior at the given stage-one outcome.

Usage

predictive_cdf(dist, prior, x1, n1, ...)

# S4 method for class 'DataDistribution,ContinuousPrior,numeric'
predictive_cdf(
  dist,
  prior,
  x1,
  n1,
  k = 10 * (prior@support[2] - prior@support[1]) + 1,
  ...
)

# S4 method for class 'DataDistribution,PointMassPrior,numeric'
predictive_cdf(dist, prior, x1, n1, ...)

Arguments

dist

a univariate distribution object

prior

a Prior object

x1

stage-one test statistic

n1

stage-one sample size

...

further optional arguments

k

number of pivots for crude integral approximation

Value

numeric, value of the predictive CDF

Examples

tmp <- ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4))
predictive_cdf(Normal(), tmp, 2, 20)
#> [1] 0.8455245

predictive_cdf(Normal(), PointMassPrior(.0, 1), 0, 20) # .5
#> [1] 0.5