Probability density function
Source:R/DataDistribution.R
, R/BinomialDistribution.R
, R/ChiSquaredDistribution.R
, and 4 more
probability_density_function.Rd
probability_density_function
evaluates the probability density
function of a specific distribution dist
at a point x
.
Usage
probability_density_function(dist, x, n, theta, ...)
# S4 method for class 'Binomial,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)
# S4 method for class 'ChiSquared,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)
# S4 method for class 'NestedModels,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)
# S4 method for class 'Normal,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)
# S4 method for class 'Student,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)
# S4 method for class 'Survival,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)
Arguments
- dist
a univariate
distribution
object- x
outcome
- n
sample size
- theta
distribution parameter
- ...
further optional arguments
Details
If the distribution is Binomial
,
theta denotes the rate difference between
intervention and control group.
Then, the mean is assumed to be
√ n theta.
If the distribution is Normal
, then
the mean is assumed to be
√ n theta.
Examples
probability_density_function(Binomial(.2, FALSE), 1, 50, .3)
#> [1] 0.0008519612
probability_density_function(Pearson2xK(3), 1, 30, get_tau_Pearson2xK(c(0.3, 0.4, 0.7, 0.2)))
#> [1] 0.003505548
probability_density_function(ZSquared(TRUE), 1, 35, get_tau_ZSquared(0.4, 1))
#> [1] 0.1646112
probability_density_function(ANOVA(3), 1, 30, get_tau_ANOVA(c(0.3, 0.4, 0.7, 0.2)))
#> [1] 0.2513264
probability_density_function(Normal(), 1, 50, .3)
#> [1] 0.3520653
probability_density_function(Student(TRUE), 1, 40, 1.1)
#> [1] 0.0001946335
probability_density_function(Survival(0.6,TRUE),0.75,50,0.9)
#> [1] 0.1765677